

Centro Universitario de Ciencias Exactas e Ingenierías Secretaría Académica / Coordinación de la Licenciatura en Química Comité de Innovación Curricular de la Licenciatura en Química

|                                  | 1 G                                 | ENERAL INFO  | RMATION |          |           |                                              |
|----------------------------------|-------------------------------------|--------------|---------|----------|-----------|----------------------------------------------|
| Learning Unit                    |                                     | Departm      | ent     |          |           | Format                                       |
| Organic Chemistry The            | eory III                            | Chemistr     | У       |          |           | Lecture                                      |
| Prerequisites (P)                | Corequisites (CO)                   | Academy      |         |          | Module    |                                              |
| Organic Chemistry<br>Theory II   | Organic Chemistry<br>Theory Lab III | Organic che  | mistry  |          | -         | thesis, purification and<br>I transformation |
| Туре                             | Lecture hours                       | Practice hou | ırs     | Total h  | ours      | Credits                                      |
| Basic, particular,<br>mandatory. | 4 hours per week.                   |              |         | 68 hrs.  |           | 9                                            |
| Degrees in which this            | class is taught:                    |              |         |          |           |                                              |
| B.S in Chemistry.                | B.S. in Chemical Enginee            | ering        | B.S. in | Bio-phar | maceutica | ll Chemistry                                 |

### 2.- GENERIC COMPETENCIES

-Problem solving

- -Synthesis and analysis.
- -Managing information
- -Oral and written production
- -Discerning and decision-making

#### Specific competencies

- Autonomous development of the acquired knowledge.
- -Autonomy and teamwork.
- -Application of knowledge in specific or complex situations.
- -Ability to solve problems of organic chemistry.

#### **3.- SPECIFIC CHARACTERISTICS OF THE COMPETENCY**

| Knowledge | Students                                                                         |
|-----------|----------------------------------------------------------------------------------|
|           | . Compare the physical and chemical properties of carbonyl compounds (aldehydes, |
|           | ketones, and carboxylic acids).                                                  |
|           | . Handle the nomenclature rules of carbonyl compounds aldehydes, ketones,        |
|           | carboxylic acids and their derivatives).                                         |
|           | . Identify the reactions of carbonyl compound obtaining.                         |
|           | . Apply the main reactions of carbonyl reactions.                                |
|           | . Apply the condensation and cyclization reactions of carbonyl compounds.        |
|           | . Identify the main heterocyclical compounds.                                    |
|           |                                                                                  |



Centro Universitario de Ciencias Exactas e Ingenierías Secretaría Académica / Coordinación de la Licenciatura en Química Comité de Innovación Curricular de la Licenciatura en Química

| . Predict the variation of the boiling points of aldehydes, ketones, carboxylic acids and |
|-------------------------------------------------------------------------------------------|
| their derivatives.                                                                        |
| . Predict the displacements of acid-base reactions of amines and carboxylic acids.        |
| . Distinguish the polarity, acidity and reactivity of aldehydes, ketones carboxylic acids |
| and their derivatives.                                                                    |
| . Know the priority order of the different organic species to name multifunctional        |
| compounds.                                                                                |
| . Know alternatives to replace compounds in synthesis routes.                             |
| . Know how to apply knowledge about organic compound reactions in order to                |
| propose efficient and direct synthesis routes.                                            |
| . Propose methods to obtain molecules with carbonyl groups using the most                 |
| appropriate reagents for each situation.                                                  |
| . Propose efficient synthesis routes that take few steps in order to save resources.      |
| . Modify and optimize reactions choosing the most appropriate reaction mechanisms.        |
| . Make decisions based on the specific information of chemical compounds.                 |
| . Develop analytical thinking that is necessary to synthesize new compounds.              |
| . Develop awareness to protect the environment.                                           |
| . Develop and reaffirm values such as responsibility, honesty, tolerance, solidarity,     |
| willingness, and positive attitude towards individual and group work.                     |
|                                                                                           |

| 4 TR         | ANSVERSAL COMPETENCIES                         |
|--------------|------------------------------------------------|
| $\checkmark$ | Foreign Language (English)                     |
| $\checkmark$ | Critical, analytical and synthetic thinking.   |
| $\checkmark$ | Oral and written expression                    |
|              | Professional ethics                            |
|              | Administration of human and material resources |
|              | Leadership and sustainability                  |
|              | Creativity, innovation and entrepreneurship    |
|              | Other                                          |
| II           |                                                |

### 5.- COURSE CONTENT OF THE LEARNING UNIT

### Unit 1: Aldehydes and ketones.

- 1.1 Introduction to carbonylic compounds.
- 1.2 Nomenclature of aldehydes and ketones.



Centro Universitario de Ciencias Exactas e Ingenierías Secretaría Académica / Coordinación de la Licenciatura en Química Comité de Innovación Curricular de la Licenciatura en Química

- 1.2.1 IUPAC nomenclature of aldehydes and ketones
- 1.3 Physical properties of aldehydes and ketones.
- 1.4 Reactions to obtain aldehydes.
- 1.4.1 Oxidation of primary alcohols.
- 1.4.2 Reduction of acid chlorides.
- 1.4.3 Partial reduction of esters.
- 1.4.4 Ozonolysis of olefins.
- 1.4.5 Hydroboration of alkynes.
- 1.4.6 Oxidation of methylbenzene
- 1.4.7 Reimer-Tieman reaction
- 1.5 Reactions to obtain ketones.
- 1.5.1 Oxidation of secondary alcohols.
- 1.5.2 Reduction of chloride acids and diorganocopper
- 1.5.3 Friedel-Craft acylation
- 1.5.4 Alkyne hydration
- 1.5.5 Ozonolysis of olefins
- 1.5.6 From carboxylic acids
- 1.6 Aldehyde and ketone reactions
- 1.6.1 Oxidation and Tollen's test
- 1.6.2 Reduction
- 1.6.3 Cyanide addition
- 1.6.4 Addition of ammoniac derivatives.
- 1.6.5 Addition of alcohols.
- 1.6.6 Addition of Grignard reagents.
- 1.6.7 Wittig reaction
- 1.6.8 Cannizzaro reaction

#### Unit 2 Amines

- 2.1 The importance of amines
- 2.2 Properties of amines



Centro Universitario de Ciencias Exactas e Ingenierías Secretaría Académica / Coordinación de la Licenciatura en Química Comité de Innovación Curricular de la Licenciatura en Química

- 2.3 IUPAC nomenclature of amines
- 2.4 Reactions to obtain amines
- 2.4.1 Reduction of nitro compounds
- 2.4.2 Reaction of halides
- 2.4.3 Reductive amination
- 2.4.4 Reduction of nitriles
- 2.5 SN2 reaction of amines
- 2.5.1 Acylation of amines with acid chlorides.
- 2.5.2 Sulphonamide formation.
- 2.5.3 Hoffman reaction
- 2.5.4 Hoffman elimination
- 2.5.5 Cope elimination
- 2.5.6 Reactions of diazonium salts.

#### **Unit 3 Carboxylic acids**

- 3.1 Introduction and importance of carboxylic acids
- 3.2 Properties of carboxylic acids
- 3.3 IUPAC Nomenclature of carboxylic acids
- 3.4 Reactions to obtain carboxylic acids
- 3.4.1 Oxidation of primary alcohols.
- 3.4.2 Oxidation of alkylbenzenes
- 3.4.3 Carbonatation of Grignard reagents.
- 3.4.4 Nitrile hydrolysis
- 3.4.5 Alkyne breaking
- 3.5 Reactions of carboxylic acids
- 3.5.1 Fisher esterification
- 3.5.2 Acid chloride esterification
- 3.5.3 Formation of amides with acid chlorides.
- 3.5.4 Direct formation of amides
- 3.5.5 Aldehydes reduction



Centro Universitario de Ciencias Exactas e Ingenierías Secretaría Académica / Coordinación de la Licenciatura en Química Comité de Innovación Curricular de la Licenciatura en Química

#### 3.5.6 Formation of ketones

### 3.5.7 Reduction of alcohols

### Unit 4 Derivatives of carboxylic acids

4.1 Importance and uses of the main derivatives of carboxylic acids: acid halides, anhydrides, esters,

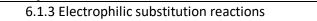
amides, and nitriles.

4.2 IUPAC nomenclature of the derivatives of carboxylic acids: acid halides, anhydrides, esters, amides, and nitriles.

- 4.3 Interconversion of the derivatives of carboxylic acids.
- 4.4 Hydrolysis of the derivatives of carboxylic acids.
- 4.5 Reduction of derivatives of carboxylic acids

4.6 Reactions of the derivatives of carboxylic acids with organometallics.

### Unit 5 Condensation and alpha substitution of carboxylic acids


- 5.1 Enols and enolates
- 5.1.1 Tautomerism of carboxylic compounds
- 5.1.2 Alkylation of enolate ions.
- 5.2 Alkylation of enamines
- 5.3 Alpha halogenation
- 5.4 Hell-Volhard-Zelinsky reaction
- 5.5 Aldol condensation of aldehydes and ketones
- 5.6 Crossed aldol condensation of aldehydes and ketones.
- 5.7 Claisen condensation of esters.
- 5.8 Dieckman condensation
- 5.9 Malonic synthesis
- 5.10 1, 2 and 1, 4 Michael's reactions.
- 5.11 Robinson ring formation

#### Unit 6 Introduction to heterocyclical compounds

- 6.1 Five atom rings
- 6.1.1 Synthesis of Paal-Knorr
- 6.1.2 Synthesis of Hinsberg



Centro Universitario de Ciencias Exactas e Ingenierías Secretaría Académica / Coordinación de la Licenciatura en Química Comité de Innovación Curricular de la Licenciatura en Química



6.2 Six atom rings

| 6 ASS | SESSMENT       |
|-------|----------------|
| >     | Numeric grade. |
|       |                |
|       |                |

| 7 GRADING CRITERIA OF THE LEARNING UNIT |            |  |  |  |  |
|-----------------------------------------|------------|--|--|--|--|
| Indicator of evaluation                 | Percentage |  |  |  |  |
| Departmental exams                      | 25         |  |  |  |  |
| Partial exam                            | 40         |  |  |  |  |
| Homework                                | 35         |  |  |  |  |
| Research activities                     | 10         |  |  |  |  |
| Practice reports                        | 0          |  |  |  |  |
| Class participation                     | 0          |  |  |  |  |

| 8 RE | CQUIRED MATERIAL (for students) |
|------|---------------------------------|
|      | Calculator                      |
|      | Periodic table                  |
|      | Lab coat                        |
| ~    | Text book                       |
|      | Workbook                        |
|      |                                 |



Centro Universitario de Ciencias Exactas e Ingenierías Secretaría Académica / Coordinación de la Licenciatura en Química Comité de Innovación Curricular de la Licenciatura en Química

### 9.-SPECIFIC CONTENT BY LEARNING UNITS

| Content unit                         | Generic competency of<br>the content unit                                                                                                                                                                                                                                                   | Topics                                                                                                                                                                                                                                                                                                                                | Class<br>hours             | Professor activities                                                                                                                                                                                                                                                                     | Student activities                                                                                                                                                                                                                                                                                              | Bibliography                                                                                                     |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Unit 1:<br>Aldehydes<br>and ketones. | Students<br>Relate the structural<br>characteristics of<br>aldehydes and ketones<br>with their chemical and<br>physical properties.<br>Propose routes to<br>obtain and convert<br>aldehydes and ketones<br>using reaction models.<br>Know and apply the<br>bases of reaction<br>mechanisms. | <ol> <li>1.1 Introduction to<br/>carbonylic compounds.</li> <li>1.2 Nomenclature of<br/>aldehydes and ketones.</li> <li>1.3 Physical properties of<br/>aldehydes and ketones.</li> <li>1.4 Reactions to obtain<br/>aldehydes.</li> <li>1.5 Reactions to obtain<br/>ketones.</li> <li>1.6 Aldehyde and ketone<br/>reactions</li> </ol> | 1h<br>1h<br>4h<br>4h<br>5h | Professor<br>-Presents the introduction<br>to the content unit,<br>highlighting the<br>importance of carbonylic<br>compounds in chemistry.<br>-Presents the main<br>methods to obtain<br>aldehydes and ketones.<br>-Presents the main<br>conversion reaction of<br>aldehydes and ketones | Students<br>-Solve exercises to<br>obtain aldehydes and<br>ketones applying the<br>models of the reactions.<br>-Predict the<br>majoritarian product<br>from two or more<br>reagents using reaction<br>mechanisms.<br>-Propose steps to<br>obtain different<br>functional groups using<br>aldehydes and ketones. | Wade Jr. L. G.<br>(2012).<br><i>Química</i><br><i>orgánica</i><br><i>Volume II</i> (7th<br>edition).<br>Pearson. |



| Unit 2Students relate the<br>characteristics,<br>highlighting the<br>nitrogen compounds<br>with biological activity.2.1 The importance of<br>aminesAmines2.2 Properties of amines2.3 IUPAC nomenclature<br>of amines0f amines2.4 Reactions to obtain<br>aminesamines2.5 SN2 reaction of<br>aminesamines | 2h<br>3h<br>5h | <ul> <li>Professor</li> <li>-Presents the introduction<br/>to the content unit.</li> <li>-Presents the main<br/>methods to obtain<br/>amines.</li> <li>-Presents the main<br/>reactions to convert<br/>amines.</li> </ul> | Students<br>-Name structures and<br>propose formulas using<br>the name of amines<br>according to the IUPAC<br>rules.<br>-Solve exercises to<br>obtain amines by<br>applying the reaction<br>models.<br>-Predict the<br>majoritarian product<br>using two or more<br>reagents, and taking<br>into the account the<br>reaction mechanisms.<br>-Propose steps to<br>obtain different<br>functional groups based<br>on amines. |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|



| Students<br>Relate the structural<br>characteristics of<br>carboxylic acids with<br>their chemical and<br>physical properties.3.1 Introduction and<br>importance of carboxylic<br>acidsUnit 3Propose routes to<br>obtain and convert<br>carboxylic acids using<br>reaction models.3.2 Properties of<br>carboxylic acidsKnow and apply the<br>mechanisms.3.3 IUPAC Nomenclature<br>of carboxylic acidsKnow and apply the<br>bases of reaction<br>mechanisms.3.4 Reactions to obtain<br>carboxylic acids | 1h<br>1h<br>2h<br>2h<br>4h | Professor<br>-Presents the introduction<br>to the content unit.<br>-Presents the main<br>methods to obtain<br>carboxylic acids.<br>-Presents the main<br>reactions to convert<br>carboxylic acids. | Students<br>Predict the reaction<br>equilibrium of acid-base<br>reactions of carboxylic<br>acids based on<br>pKa tables.<br>-Solve exercises to<br>obtain carboxylic acids<br>applying the models of<br>the reactions.<br>-Predict the<br>majoritarian product<br>from two or more<br>reagents using reaction<br>mechanisms.<br>-Propose steps to<br>obtain different<br>functional groups using<br>carboxylic acids. |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|



| Unit 4         | Students                                   | 4.1 Importance and uses    | 1h | Professor                  | Students                                         |
|----------------|--------------------------------------------|----------------------------|----|----------------------------|--------------------------------------------------|
| Derivatives of | Relate the structural                      | of the main derivatives of |    | -Presents the introduction |                                                  |
|                | characteristics of the                     | carboxylic acids: acid     | 2h | to the content unit,       | -Carry out a                                     |
| carboxylic     | derivatives of carboxylic acids with their | halides, anhydrides,       |    | mentioning the main        | bibliography                                     |
| acids          | chemical and physical                      | esters, amides, and        | 1h | functional groups as       | investigation about the                          |
|                | properties.                                | nitriles.                  |    | byproducts of carboxylic   | main uses and                                    |
|                |                                            | 4.2 IUPAC nomenclature     |    | acids                      | applications of the<br>derivatives of carboxylic |
|                | Propose routes to                          | of the derivatives of      | 2h | -Establish the priority of | acids.                                           |
|                | obtain and convert                         | carboxylic acids: acid     |    | the functional groups in   |                                                  |
|                | carboxylic acids and                       | halides, anhydrides,       |    | the nomenclature of        | -Name structures and                             |
|                | their derivatives using reaction models.   | esters, amides, and        |    | multifunctional            | propose formulas based                           |
|                | reaction models.                           | nitriles.                  | 2h | molecules.                 | on the name of                                   |
|                | Know and apply the                         | 4.3 Interconversion of the |    | - Present the main         | multifunctional                                  |
|                | bases of reaction                          | derivatives of carboxylic  |    | interconversion reactions  | molecules, applying the                          |
|                | mechanisms.                                | acids.                     |    | among the derivatives of   | priority rules.                                  |
|                |                                            | 4.4 Hydrolysis of the      |    | carboxylic acids.          |                                                  |
|                |                                            | derivatives of carboxylic  |    | - Present the main         | -Solve interconversion                           |
|                |                                            | acids.                     |    | reactions of hydrolysis    | exercises of the                                 |
|                |                                            | 4.5 Reduction of           |    | and reduction of the       | derivatives of carboxylic                        |
|                |                                            | derivatives of carboxylic  |    | derivatives of carboxylic  | acids, applying the                              |
|                |                                            | acids                      |    | acids.                     | reaction models.                                 |
|                |                                            | 4.6 Reactions of the       |    |                            |                                                  |
|                |                                            | derivatives of carboxylic  |    |                            | -Solve exercises of                              |
|                |                                            |                            |    |                            | hydrolysis and                                   |



|                 |                                                | acids with<br>organometallics. |        |                            | reduction of the<br>derivatives of carboxylic<br>acids applying the<br>reaction models. |
|-----------------|------------------------------------------------|--------------------------------|--------|----------------------------|-----------------------------------------------------------------------------------------|
|                 |                                                |                                |        | - <i>c</i>                 |                                                                                         |
| Unit 5          | Students understand                            | 5.1 Enols and enolates         |        | Professor                  | Students                                                                                |
| Condensation    | the principle pf the<br>condensation reactions | 5.2 Alkylation of              |        |                            | -Solve exercises of the                                                                 |
| and alpha       | based on the reactivity                        | enamines                       | 15 min | -Presents the main         | different condensation                                                                  |
| •               | of the carbonyl group.                         | 5.3 Alpha halogenation         |        | condensation reactions of  | reactions of carbonylic                                                                 |
| substitution of | of the carbony group.                          | 5.4 Hell-Volhard-Zelinsky      |        | carbonylic compounds.      | compounds applying                                                                      |
| carboxylic      | State the mechanism of                         | reaction                       | 45 min |                            | the reaction models.                                                                    |
|                 | the different                                  | 5.5 Aldol condensation of      |        | -Explains the bases of the |                                                                                         |
| acids           | condensation reactions                         | aldehydes and ketones          | 2h     | reaction mechanisms of     | -Propose mechanisms                                                                     |
|                 | to predict the main                            | 5.6 Crossed aldol              |        | condensation.              | that justify the                                                                        |
|                 | product.                                       | condensation of                | 2h     |                            | formation of alpha-beta                                                                 |
|                 |                                                | aldehydes and ketones.         |        |                            | unsaturated                                                                             |
|                 |                                                | 5.7 Claisen condensation       | 2h     |                            | compounds.                                                                              |
|                 |                                                | of esters.                     | 1h     |                            |                                                                                         |
|                 |                                                | 5.8 Dieckman                   | 1h     |                            |                                                                                         |
|                 |                                                | condensation                   | 1h     |                            |                                                                                         |
|                 |                                                | 5.9 Malonic synthesis          |        |                            |                                                                                         |
|                 |                                                | 5.10 1, 2 and 1, 4             |        |                            |                                                                                         |
|                 |                                                | Michael's reactions.           |        |                            |                                                                                         |



|                                                             |                                                                                 | 5.11 Robinson ring formation.                                    |          |                                                                                                                                                            |                                                                                     |                                                                                             |
|-------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Unit 6<br>Introduction<br>to<br>heterocyclical<br>compounds | Students know the<br>structures of the<br>different heterocyclical<br>compounds | <ul><li>6.1 Five atom rings</li><li>6.2 Six atom rings</li></ul> | 2h<br>2h | Professor<br>-Presents the main<br>heterocyclical compounds<br>of 5 and 6 atoms.<br>- Presents the synthesis<br>reactions of 5 and 6 atom<br>heterocycles. | Students<br>Relate the aromaticity<br>of heterocycles with<br>their main reactions. | Paquette Leo<br>A. (2014).<br>Fundamentos<br>de<br>Química<br>heterocíclica,<br>Ed. Limusa. |



Centro Universitario de Ciencias Exactas e Ingenierías Secretaría Académica / Coordinación de la Licenciatura en Química Comité de Innovación Curricular de la Licenciatura en Química

| - Partial Exams<br>- Departmental<br>- Research hom<br>- Problem solvi |                           |  |  |  |
|------------------------------------------------------------------------|---------------------------|--|--|--|
| 10PROFESSOR'S PROFILE                                                  |                           |  |  |  |
| Bachelor of Sciences, Masters or PhD in Chemistry or similar degrees.  |                           |  |  |  |
| Specific knowledge in organic chemistry                                |                           |  |  |  |
| Teaching experience in organic chemistry                               |                           |  |  |  |
|                                                                        |                           |  |  |  |
| 11AUTHOR OF THE LEARNING UNIT                                          |                           |  |  |  |
| Roberto Eduardo San Juan Farfán                                        |                           |  |  |  |
|                                                                        | 12MODIFICATION AND UPDATE |  |  |  |
|                                                                        |                           |  |  |  |
| March 6, 2017                                                          |                           |  |  |  |

Haga clic aquí para escribir texto.