

Basic Sciences Division

Department of Chemistry

Inorganic Chemistry II

NUMBER CALLER

UNIVERSIDAD DE GUADALAJARA

Centro Universitario de Ciencias Exactas e Ingenierías

1 GENERAL INFORMATION							
Learning unit:			Department:			Course	format
Inorganic Chemistry II			Chemistry			Lecture	e
Prerequisites(P)	Corequisites (CO)	A	scribed Academy	Module			
Inorganic Chemistry I	Inorganic Chemistry	Chemistry		M2: Synthesis, purification and		urification and	
	Lab II				chemica	l transfo	ormation.
Туре	Lecture hours	Pr	ractice hours	Total h	ours		Credits
Basic particular	4 hrs./per week	0	hrs.	68 hrs.			9
mandatory							

Degree in which this class is taught: B.S in Chemistry.

2.- GENERIC COMPETENCIES

Students...

-Are able to apply the main concepts related to the theories, models, and approaches used to describe chemical structures and bonds of the compounds with metals of blocks d and f.

- Are able to then synthesize this type of compounds by analyzing their chemical, magnetic and spectroscopic properties.

-Recognize the transcendence and application of coordination chemistry in labs and industries.

3 SPECIFIC CHARACTERISTICS OF THE COMPETENCY						
Knowledge	 Students know, discuss and predict descriptive chemistry of transition metals (block d) structures and isomers of coordination complexes. bond theories for the coordination complexes. reactions and mechanisms of the coordination complexes. electronic spectra of the coordination complexes. descriptive chemistry of lanthanides and actinides (block f). 					
Skills	 Students identify the general properties of transition metals. use the appropriate nomenclature to name the coordination complexes. determine the main characteristics of the coordination complexes. outline the possible isomers for a coordination complex. explain the bond of coordination complexes according to the current theories. interpret the absorption spectra base on electronic transitions. distinguish the typical reactions of the coordination complexes. 					
Aptitudes	Autonomous learning					

Centro Universitario de Ciencias Exactas e Ingenierías

	-						
		 Ability to analyze, synthesize, and evaluate. Ability to identify and solve problems. Creativity Critical thinking Use of digital resources. Work culture 					
Values		Students develop and exercise values such as responsibility, honesty, tolerance, respect, solidarity, willingness and positive attitude towards individual and group work.					
	4 TRANSVERSAL COMPETENCIES						
	Foreign Languag Critical, analytica Oral and written Professional ethi Administration o Leadership and s Creativity, innov Other	e (English) al and synthetic thinking. expression ics of human and material resources sustainability ation and entrepreneurship					

5.- COURSE CONTENT OF THE LEARNING UNIT

1. Chemistry of transition metals (block d)

- 1.1. Abundance of transition metals on the earth's crust.
- 1.2. Electronic configurations and oxidation states.
- 1.3. Physical properties of transition metals.
- 1.4. Atomic radii and lanthanide contraction.
- 1.5. Variation of the ionization energies and the inert pair effect.
- 1.6. Magnetism and measurement of magnetic susceptibility.

2. Structures of coordination complexes.

- 2.1. Parts and classification of coordination complexes.
- 2.2. Types of binders (L and X)
- 2.3. Determination of the main characteristics of coordination complexes:
 - 2.3.1. Number of valence electrons (NVE) and the 18 electron rule.
 - 2.3.2. Number of non-bonding electrons (NNBE).
 - 2.3.3.Oxidation state (OS) and charge (q)
 - 2.3.4. Coordination number (CN) and the main geometries of the coordination complexes. (1-8).
- 2.4. Nomenclature of coordination complexes.
- 2.5. History of coordination chemistry
- 2.6. Importance of the coordination complexes.

CULVERSIDAD DECRUMALATER

UNIVERSIDAD DE GUADALAJARA

Centro Universitario de Ciencias Exactas e Ingenierías

3. Isomerism of coordination complexes.

- 3.1. Definition and types of isomers
- 3.2. Structural isomers.
 - 3.2.1. Linkage, ionization, hydration and coordination isomers.
- 3.3. Stereoisomers
 - 3.3.1. Geometric isomers in square planar compounds. BPT and octahedral.
 - 3.3.2. Optical isomers, chirality and optical activity.
 - 3.3.3.Absolute configuration of tetrahedral (R and S) and octahedral compounds (Δ and λ).
- 3.4. Changes in the stereochemistry with no bond breaking.
 - 3.4.1. Inversion in tri-coordinate systems
 - 3.4.2. Pseudorotation in tetra-coordinate, penta-coordinate and hexa-coordinate systems

4. Coordination chemistry: bonding theories

- 4.1. Evidences of electronic structure
 - 4.1.1. Magnetic properties of the coordination complexes.
 - 4.1.2. Optical properties of the coordination complexes.
- 4.2. Valence bond theory
 - 4.2.1. Complexes with sp3, sp2d, sp3d, dsp3, sp3d2 and dsp3 hybridization
 - 4.2.2. Inner and outer orbital complexes.
- 4.3. Crystal field theory
 - 4.3.1. Crystal field stabilization energy (CFSE)
 - 4.3.2.CFSE variations: Geometry, metal and ligand identities.
 - 4.3.3.Spectrochemistry series
 - 4.3.4. Experimental evidences of orbital splitting.
- 4.4. Ligand field theory
 - 4.4.1. Construction of the MO diagram. Octahedral and tetrahedral geometries.
 - $4.4.2.\sigma$ and π interactions and donors
 - $4.4.3.\pi$ interactions and acceptors
 - 4.4.4. Magneto chemical series.
 - 4.4.5. Angular overlap method

5. Coordination chemistry; reactions and mechanisms

- 5.1. Reactivity of the coordination complexes.
 - 5.1.1. Thermodynamic factors: stable and unstable complexes.
 - 5.1.2. Formation constants
 - 5.1.3.Chelate effect
 - 5.1.4. Kinetic factors: labile and inert compounds.
- 5.2. Substitution reactions
 - 5.2.1. Substitution mechanisms; dissociative, associative and exchange.
 - 5.2.2. Substitution reactions in square planar complexes: stereochemistry and factors that influence speed. Entering group, leaving group, central ion and ligands. Trans effect.

Universidad de Guadalajara

Centro Universitario de Ciencias Exactas e Ingenierías

- 5.2.3. Substitution reactions of octahedral complexes: stereochemistry, dependency of the Number of nonbonding electrons (NNBE) and effects of the ligands. Steric ligand spectators, Tolman's cone angle.
- 5.3. Oxide reduction reactions
 - 5.3.1. Inner sphere and outer sphere mechanism.
 - 5.3.2. Conditions for high and low oxidation states.

6. Coordination chemistry: electronic spectra

- 6.1. Atom quantic numbers of poly electronic atoms.
- 6.2. Spin-orbit coupling
- 6.3. Microstates and their reduction to terms
- 6.4. Electronic spectra of the coordination complexes.
 - 6.4.1. Selection rules
 - 6.4.2. Correlation diagrams
 - 6.4.3. Tanabe–Sugano diagrams
 - 6.4.4.Jahn-Teller effect in absorption spectra
 - 6.4.5. Charge transference spectra

7. Lanthanide and actinide chemistry (Block f)

- 7.1. Properties of lanthanide elements.
- 7.2. Properties of actinide elements

	6 ASSESSMENT
<	Numeric grade

7 GRADING CRITERIA OF THE LEARNING UNIT						
Indicator of evaluation	Percentage					
Departmental exams	30					
Partial exam	40					
Homework	10					
Research activities	10					
Practice reports	0					
Class participation	10					

Universidad de Guadalajara

	8 REQUIRED MATERIAL (for students)					
>	Calculator					
>	Periodic table					
	Lab coat					
>	Text book					
	Workbook					
	Tables of standard potential, table of mobility, etc.					

9SPECIFIC CONTENT BY LEARNING UNITS						
Content unit	Generic competency of the content unit	Topics	Class hours	Professor activities	Student activities	Bibliography
		1.1 Abundance of transition metals on the earth's crust.	30 min	Professor -lectures	Students - develop online and paper activities such as:	
	Recognize	1.2 Electronic configurations and oxidation states.	30 min	-creates and corrects homework.	 ✓ forums ✓ homework ✓ exam 	
Unit 1 Chemistry of transition metals (block d) th e	and predict the physical and chemical	1.3 Physical properties of transition metals.	30 min	-designs the exam.		Brown Le May Química General,
	properties of the block d elements.	1.4 Atomic radii and lanthanide contraction.	30 min			
		1.5 Variation of the ionization energies and the inert pair effect	30 min			
		1.6 Magnetism and measurement of magnetic susceptibility.	30 min			

		2.1 Parts and classification		Professor	Students	
		of coordination complexes.	30 min		- develop online	
				-lectures	and paper	
		2.2 Types of binders (L and			activities such as:	
		X)	1 h	-creates	d forume	
	Understand	2.3 Determination of the		corrects	✓ forums✓ homework	- · ·
Linit 2	the structure	main characteristics of	3 5 h	homework.	✓ exam	Shriver, Atking 2009
Structures of coordination	and predict	coordination complexes.	5.5 11	docigno		Inorganic
complexes	the proportion of	2.4 Nomenelature of		-designs		Chemistry,
	coordination	2.4 Nomenciature of	2 h	the exam.		5th Ed., W. H.
	complexes.		2			Freeman.
		2.5 History of coordination				
		chemistry	30 min			
		2.6 Importance of the				
		coordination complexes.	30 min			
	Define and	3.1 Definition and types of		Professor	Students	
Linit 3	distinguish	isomers	1 h		- develop online	Shriver,
Isomerism of	the different			-lectures	and paper	Atkins 2009
coordination complexes	types of	3.2 Structural isomers:			activities such as:	Inorganic
	isomerism	Linkage,		-creates		Chemistry,
	that occur in	ionization,	1 N	and	✓ Torums	Sth Ed., W. H.
	the	nyaration		homework	 ✓ nomework ✓ exam 	Freeman,
		anu		Homework.	Слан	

СС	oordination	coordination			
c	complexes.	isomers.		-designs	
				the exam.	
		3.31 Stereoisomers			
		Geometric			
		isomers in			
		square planar	2 6		
		compounds.	Zn		
		BPT and			
		octahedral.			
		3.32 Stereoisomers			
		Optical isomers, chirality	2 h		
		and optical activity			
	-	3 33 Absolute			
		configuration of			
		tetrahedral (R and S) and			
		octabedral compounds (A	2 h		
		and λ)			
	-	3.34 Changes in the			
		stereochemistry with no			
		bond breaking.			
		Inversion in tri-coordinate			
		systems	1 h		
		Pseudorotation in tetra-			
		coordinate, penta-			
		coordinate and hexa-			
		coordinate systems.			

		4.1 Evidences of electronic structure Magnetic properties of the coordination complexes. Optical properties of the coordination complexes.	1 h	Professor -lectures -creates and corrects	Students - develop online and paper activities such as: ✓ forums ✓ homework	
Unit 4. Coordination chemistry: bonding theories	Apply current theories to describe chemical bonding in the compounds with metals from block b	 4.2 Valence bond theory Complexes with sp3, sp2d, sp3d, dsp3, sp3d2 and dsp3 hybridization 4. 3 Crystal field theory 4.31 Crystal field stabilization energy (CFSE) 4.32 CFSE variations: Geometry, metal and ligand identities. 4.33 Spectrochemistry series 4.34 Experimental evidences of orbital splitting. 	1 h 8 h	homework. -designs the exam.	✓ exam	Miessler, Gary L., Tarr, Donald, A. <i>Inorganic</i> <i>Chemistry</i> 2014. 5th Ed., Pearson.

		4.4 Ligand field theory	10 h			
		 4.41 Construction of the MO diagram. Octahedral and tetrahedral geometries. 4.42 σ and π interactions and donors 4.43 π interactions and acceptors 4.44 Magneto chemical series. 				
		4.45 Angular overlap method	2 h			
Unit 5 Coordination chemistry, reactions and mechanisms	Evaluate the reactivity of the coordination complexes	 5.1 Reactivity of the coordination complexes. 5.11 Thermodynamic factors Formation constants Chelate effect 5.12 Kinetic factors: labile and inert compounds. 	2 h	Professor -lectures -creates and corrects homework. -designs	Students - develop online and paper activities such as: ✓ forums ✓ homework ✓ exam	, Shriver, Atkins 2009 <i>Inorganic</i> <i>Chemistry</i> , 5th Ed., W. H. Freeman,
		5.2 Substitution reactions	3 h	the exam.		

5.2.1 Substitution				
mechanisms: dissociative,				
associative and exchange.				
5.2.2 Substitution reactions				
in square planar				
complexes:				
stereochemistry and				
factors that influence				
speed. Entering group,				
leaving group, central ion				
and ligands. Trans effect.				
5.2.3 Substitution reactions				
of octahedral complexes:				
stereochemistry,				
dependency of the				
Number of non-bonding				
electrons (NNBE) and				
effects of the ligands.				
Steric ligand spectators.				
Tolman's cone angle.				
5.3 Oxide reduction	2	h		
reactions	-			
5.3.1 Inner sphere and				
outer sphere				
mechanism				
meenamism.				

			1		1	
		5.3. 2 Conditions for high				
		and low oxidation				
		states				
Unit 6 Coordination chemistry: electronic spectra	Determine the spectroscopic properties of the coordination complexes.	6.1 Atom quantic numbers	1 h	Professor	Students	
		of poly electronic atoms.		-lectures -creates and corrects homework. -designs the exam.	 develop online and paper activities such as: ✓ forums ✓ homework ✓ exam 	
		6.2 Spin-orbit coupling	1 h			Miessler, Gary L., Tarr, Donald, A.
		6.3 Selection rules	1 h			
		6.4 Correlation diagrams	2 h			
		and Tanabe-Sugano				Inorganic
		diagrams. Their use in the				Chemistry
		determination of ∆o				2014. 5ª Éd., Pearson.
		6.5 Jahn-Teller's distortion	1 h			
		6.6 Charge transfer	1 h			
		complexes				
				-		
Unit 7	Recognize the	7.1 Properties of	2	Professor	Students	Geoff Rayner-
Lanthanide and actinide	basic	lanthanide elements.			- develop online	Canham
chemistry (Block f)	properties of	7.2 Properties of actinide		-lectures	and paper	Química
	lanthanide	elements	2		activities such as:	Inorgánica
	and actinide			-designs		Descriptiva.
	compounds.			the exam.	✓ forums	2 nd Ed.
					✓ homework	Prentice Hall
COURSE EVIDENCES						
(Deliverables)						
- Partial Exam						
- Departmental exam						
- Research tasks						
- Problem and concept solutions						

Centro Universitario de Ciencias Exactas e Ingenierías

10.-PROFESSOR'S PROFILE

Bachelor degree in Chemistry. Graduate degrees in chemical synthesis (inorganic) Specific knowledge of Inorganic Chemistry. Teaching experience in Coordination Chemistry.

11.-AUTHORS OF THE LEARNING UNIT

Sara Cortes Llamas Irma Idalia Rangel José Miguel Velázquez López

12.-MODIFICATION AND UPDATE

November 2016