

Centro Universitario de Ciencias Exactas e Ingenierías Secretaría Académica / Coordinación de la Licenciatura en Química Comité de Innovación Curricular de la Licenciatura en Química

1 GENERAL INFORMATION								
Learning unit	Department			Forma	t			
General Chemistry Lab	b II	Chemistry			Lab			
Prerequisites(P) Corequisites (CO) As		Ascribed academy	scribed academy Module					
None	General Chemistry II	Chemistry	Chemistry		M1: Structure of matter			
Туре	Lecture hours	Practice hours	Practice hours Total h			Credits		
Basic Particular	0	51	51 51			3		
Mandatory								

2.- GENERIC COMPETENCIES

Students...

... relate the theoretical knowledge seen in class with the topics of solutions redox and non-redox reactions, solution and crystallization processes, colligative properties, chemical kinetics, and chemical equilibrium through the experimentation with reagents, analytical techniques, lab material and equipment to develop motor, cognitive and scientific skills.

2 GENERIC CO	MPETENCIES				
	Ability to relate the theory of General Chemistry II with the development of				
	Experimental Chemistry.				
Knowledge	Lab material and equipment.				
	Adequate use of computers.				
	Search for bibliographic information.				
	Writing up scientific reports.				
	Handling reagents, lab material and equipment.				
	Team and collaborative work.				
Skills	Autonomous learning.				
SKIIIS	Analytical and critical thinking.				
	Use of digital resources.				
	Ability to synthesize, analyze and evaluate.				
	Responsibility.				
	Personal and collective care.				
Aptitudes	Care and preservation of the environment.				
Aptitudes	Team and collaborative work.				
	Saving material resources, water, and energy.				
	Ethics				
Values	Honesty				
	Cleanliness				

Centro Universitario de Ciencias Exactas e Ingenierías Secretaría Académica / Coordinación de la Licenciatura en Química Comité de Innovación Curricular de la Licenciatura en Química

Responsibility	
Tolerance	
Respect	
Punctuality	

4 T	RANSVERSAL COMPETENCIES
<	Foreign Language (English)
>	Critical, analytical and synthetic thinking.
>	Oral and written expression
>	Professional ethics
>	Administration of human and material resources
>	Leadership and sustainability
>	Creativity, innovation and entrepreneurship
	Algebra

5.- COURSE CONTENT OF THE LEARNING UNIT

Preparation and titration of redox and non-redox solutions and their applications in analytical chemistry.

Dissolution and crystallization processes.

Determination of colligative properties.

Chemical kinetics.

Chemical equilibrium.

Ionic equilibrium. (Using the potentiometer).

6 ASS	6 ASSESSMENT					
>	Numeric grade					

7 GRADING CRITERIA OF THE LEARNING UNIT						
Indicator of evaluation Percentage						
Practical exams	15					
Questionnaires	15					
Research activities	15					

Experimentation reports	40
Other: attendance	15

8 RE	8 REQUIRED MATERIAL (for students)				
>	Calculator				
~	Periodic table				
~	Lab coat				
	Text book				
~	Workbook				
>	Other (Work material: gloves, safety glasses, disposable material, etc.)				

Content unit	Generic competency of the content unit	Topics	Class hours	Professor activities	Student activities	Bibliography
Unit 1	Students	Non-redox	9	Professor	Students	Douglas A. Skoog, West,
Preparation		solutions				Holler and Crouch
and titration of	-Define and apply the			-Calculates the	- Research before	(2001) Química
solutions for	concept of normality and			amount of	class to know about	Analítica, 7th edition
redox and non-	molarity, using preparation			substance and	the safe handling of	Mc. Graw-Hill, Mexico.
redox	and titration of solutions			explains the	reagents.	
reactions: their	with a specific			preparation of the		Daniel C. Harris (2012)
applications in	concentration to make the			normal solutions to	-Answer a	Análisis Químico
analytical	analytical quantitative			apply in non-redox	questionnaire to	Cuantitativo 3 rd edition
chemistry.	chemical calculations.			reactions.	consolidate the	(6th original edition),
					theoretical	Reverté, Spain.
	-Prepare dilutions by using			-Specifies the	knowledge and	
	a stock solution to build a			titration technique.	relate it to the	Whitten K. Davis R.,
	chart and know the trend				experimentations.	Peek M. andStanley
	line equation in order to			-Grades the results		G.,and Contributors
	determine the			of the	-Prepare solutions	(Avalos T., Blanco A.,
	concentration of test			experimentation.	for non-redox	Palacios G., Ríos N.)
	samples.				reactions and	(2011) Química, 8 th
					demonstrate their	Special edition. Cengage
					concentration by	Learning, Mexico.
					using the titration	Whitten K. Davis R.,
					method.	Peek M. y Stanley G.,

			-Quantify the concentration of a test solution. -Write a report with the results of the experimentation.	(2015), <i>Química</i> , 10 th Edition, Cengage Learning, Mexico. Brown, T., LeMay, H., Bursten, B., Murphy, C. (2014). <i>Química La</i> Ciencia Central, 11th
Redox solutions	6	-Calculates the amount of substance and explains the preparation of normal solutions to apply them in redox reactions. -Specifies the titration technique. -Grades the results of the experimentation.	-Research before class to know about the safe handling of reagents. -Answer a questionnaire to consolidate the theoretical knowledge and relate it to the experimentations. -Prepare solutions for non-redox reactions and demonstrate their	edition. Mexico: Pearson.

			concentration by using the titration method. -Quantify the concentration of a test solution. -Write a report with the results of the experimentation.	
Dilutions	6	ProfessorCalculates the amount of substance and explains the preparation of solutions from a	-Carry out some research before class to know the safe handling of reagents.	
		specific concentration solution (stock solution) using a visible UV spectrophotometer	-Answer a questionnaire to consolidate the theoretical knowledge and relate it to the experimentationsPrepare solutions	

				-Grades the results of the experimentation.	concentrations from a stock solution. -Draw a chart (calibration curve) determining the absorbance of the prepared dilutionsGet the equation of the trend lineCalculate the concentration of a test sample through the chart and/or the
					-Write a report with the results of the experimentation.
Unit 2 Dissolution and crystallization processes.	Define the concepts of solubility and crystallization, determining experimentally the values of solubility of an anhydride salt at different temperatures, and then creating a chart with the	Solubility coefficients (saturated, unsaturated and supersaturated solutions)	3	ProfessorExplains the basic concepts of dissolution-crystallization.	StudentsCarry out some research before class to know the safe handling of the reagents used in this unit.

values obtained from the	-Specifies the	-Answer a
experimentation in order	analytical	questionnaire to
to compare them with the	technique.	consolidate the
theoretical information.	'	theoretical
		knowledge and
	-Grades the results	relate it to the
	of the	experimentations.
	experimentation.	·
		-Determine
		experimentally the
		coefficients of
		solubility at
		different
		temperatures.
		-Draw charts with
		the experimental
		and theoretical data
		and compares
		them.
		-Write a report
		with the results of
		the
		experimentation.

Unit 3	Determine the cryoscopic	Cryoscopic	3	Professor	Students
Colligative	constant of water by	constant		-Explains the	-Carry out some
properties	experimentally getting the			concept of the	research before
	freezing point of the pure			freezing-point	class to know the
	solvent and the freezing-			depression of a	safe handling of the
	point depression of a			solution with a	reagents used in
	specific molality solution			strong electrolyte.	this unit.
	of an electrolyte to obtain				
	the cryoscopic constant			-Explains the	-Answer a
	from these data.			interpretation of	questionnaire to
				experimental data.	consolidate the
					theoretical
					knowledge and
				-Grades the results	relate it to the
				of the	experimentations.
				experimentation.	
					-Experimentally
					obtain the freezing
					point of a pure
					solution and an
					electrolytic solution.
					-Relate the obtained
					data to calculate the
					value of the
					cryoscopic constant
					of the solvent and
					compare them

					against the tables of constants Write a report with the results of the experimentation.
Unit 4	Identify the factors that	Influence of	3	Professor	Students
Kinetic chemistry	affect the reaction rate, observing through experimentation the nature of the reagents and the influence of temperature to compare the reaction rate. Interpret through experimentation the influence of the reagent concentration on the reaction rate with different concentrations to relate	Influence of temperature.		-Explains the factors that affect the reaction rate. -Describes the qualitative analytical technique to determine the influence of elements that affect the reaction rate. -Grades the results	-Carry out some research before class to know the safe handling of the reagents used in this unit. -Compare and record the reaction rate depending on the nature of the reagent and the influence of temperature.
	the data with the order of reaction.			of the experimentation.	

<u> </u>		ı		
			-Make a list of the	
			reaction rates in	
			descendent order.	
			-Interpret the effect	
			of temperature in	
			the reaction rate.	
			the reaction rate.	
			-Write a report with	
			the results of the	
			experimentation.	
Influence of	6	-Explains the	-Research before	
	0	1		
the reagent		influence of the	class to know about	
concentration.		concentration in	the safe handling of	
		reagents.	the reagents used in	
			this unit.	
		-Describes the		
		experimental	-Compare and	
		technique and the	record the reaction	
		interpretation of	rate depending on	
		results.	the concentration of	
			the reagent.	
		-Describes and		
		define the models	-Create two charts	
		of first and second	with the obtained	
		order reactions to	data: one of the first	
		interpret the data.	order model and	

				-Grades the results of the experimentation.	one for the second order model. -Compare the results of the trend line of these models in order to deduce the reaction order and calculate the constant value of the reaction rate according to the resulting model. -Write a report with
					the results of the experimentation.
					скреппенсиюн.
Unit 5 Chemical equilibrium	Determine the concentrations of the equilibrium species through spectrophotometric methods to calculate the experimental value	Expression of equilibrium constant.	6	ProfessorExplains the concept of the equilibrium constant expression.	Students Research before class to know about the safe handling of the reagents used in this unit.

of the equilibrium	Value of	-Describes the	-Draw a calibration
constant.	equilibrium	spectrophotometric	curve with specific
Confirm the	constant.	technique.	concentrations of
Le´Châtelier principle			the equilibrium
through the			species.
perturbation of a		-Grades the results	
system in equilibrium		of the	-Determine through
(changing the		experimentation.	spectrophotometry
concentration of an			and a calibration
equilibrium species) to			curve the
interpret the course			concentration in the
where the equilibrium			equilibrium of the
will be displaced.			reaction product.
			-Calculate the
			concentration of the
			other species that
			influence the
			equilibrium.
			-Calculate the
			constant value of an
			average equilibrium.
			Muito a nanout with
			-Write a report with
			the results of the
			experimentation.

	Ι	I = 6	
Le Châtelier's	3	Professor	Students
principle		-Explains the Le	-Research before
		Châtelier's	class to know about
		principle.	the safe handling of
			the reagents used in
		-Describes the	this unit.
		experimental	
		qualitative	-Prove through
		technique and the	experimentation
		interpretation of	the course of
		results.	displacement due to
			the change of
			concentration of a
		-Grades the results	species in the
		of the	equilibrium.
		experimentation.	
		,	-Observe the effect
			of temperature over
			the equilibrium.
			-Write a report with
			the results of the
			experimentation.
	L	1	

Centro Universitario de Ciencias Exactas e Ingenierías Secretaría Académica / Coordinación de la Licenciatura en Química Comité de Innovación Curricular de la Licenciatura en Química

eq	quivalence point.		-Compares the method of volumetric titration with the method of potentiometric titration. -Describes the technical use of the potentiometer. -Grades the results of the	-Draw a chart of the pH based on the added volume. -Determine the equivalence point. -Write a report with the results of the experimentation.
			of the experimentation.	

COURSE EVIDENCE (Deliverables)

- 1) Workbook or logbook with the activities and experimentations.
- 2) Experimentation reports.

Haga clic aquí para escribir texto.