

Centro Universitario de Ciencias Exactas e Ingenierías Secretaría Académica / Coordinación de la Licenciatura en Química Comité de Innovación Curricular de la Licenciatura en Química

1 GENERAL INFORMATION								
Learning unit General Chemistry Lab I			Department Chemistry			Forma Lab	t	
Prerequisites(P)	Corequisites (CO)	A	· ·		Module			
None	General Chemistry I	C	hemistry		M1: Structure of matter		fmatter	
Туре	Lecture hours	Ρ	Practice hours Total		nours		Credits	
Basic Particular	None	51 0		0			3	
Mandatory								

2.- GENERIC COMPETENCIES

Students relate the theoretical knowledge seen in class with the topics of safety, environmental risk, properties of matter, stoichiometry, gaseous and liquid states as well as the different forms of concentration units in solutions. All this through the experimentation with reagents, analytical techniques, lab material and equipment to develop motor, cognitive and scientific skills.

3 SPECIFIC CHARAC	TERISTICS OF THE COMPETENCY
Knowledge	Lab safety and environmental risk. Relationship of theory of General Chemistry I with the development of experimentation chemistry. Lab material and equipment. Computer skills Bibliographic information.
Skills	 Writing up scientific reports. Handling of reagents and lab material and equipment. Team and collaborative work. Autonomous learning. Analytical and critical thinking Use of digital resources. Ability to synthesize, analyze and evaluate.
Aptitudes	Personal and collective care. Care and preservation of the environment. Team and collaborative work. Saving material resources, water and energy.
Values	Ethics Honesty Cleanliness Responsibility Tolerance

Centro Universitario de Ciencias Exactas e Ingenierías Secretaría Académica / Coordinación de la Licenciatura en Química Comité de Innovación Curricular de la Licenciatura en Química

Respect Punctuality

4.- TRANSVERSAL COMPETENCIES Foreign Language (English) **V** \checkmark Critical, analytical and synthetic thinking. a ~ Oral and written expression ~ **Professional ethics** ~ Administration of human and material resources ~ Leadership and sustainability \checkmark Creativity, innovation and entrepreneurship Other

5.- COURSE CONTENT OF THE LEARNING UNIT

Introduction to the experimental stage:

1. Lab safety

2. Knowing and handling lab material and equipment.

Experimental stage:

- 3. The Study of Matter
- 4. Stoichiometry
- 5. Wet gases

6 AS	6 ASSESSMENT						
	Numeric grade						

7 GRADING CRITERIA OF THE LEARNING UNIT						
Indicator of evaluation Percentage						
Practical exams	15					
Questionnaires	15					

Research activities	15
Experimentation reports	40
Other: attendance	15

8 RE	8 REQUIRED MATERIAL (for students)						
✓	Calculator						
✓	Periodic table						
✓	Lab coat						
	Text book						
V	Workbook						
✓	Other (Work material: gloves, safety glasses, disposable material, etc.)						

Centro Universitario de Ciencias Exactas e Ingenierías Secretaría Académica / Coordinación de la Licenciatura en Química Comité de Innovación Curricular de la Licenciatura en Química

9.-SPECIFIC CONTENT BY LEARNING UNITS.

Content unit	Generic competency of the content unit	Topics	Class hours	Professor activities	Student activities	Bibliography
Unit 1 Lab safety	Students know, classify, and identify chemical substances under the national (Mexican) and international regulations to promote environmental culture and ethics when treating and handling matter.	 1.1 Guidelines to handle reagents and solutions. 1.2 Hazard pictograms. 1.3 Storing reagents 1.4 Treating chemical waste. 1.5 Classification of reagents depending on their purity level. 1.6 Rules to avoid accidental pollution of reagents and solutions. 	9	Professor -Presents a video related to lab safety, personal protection, infrastructure, and proper handling of chemical reagents. - Displays and explains the Material Safety Data Sheets (MSDS) and the Mexican Official Regulations Norma Oficial Mexicana (NOM-018-STPS-2000) which adopted the NFPA (National Fire Protection Association) diamond and color	Students -Ask professor to clarify doubts when necessary. - Understand the importance of the guidelines to relate chemical substances and their degree of hazard. - Investigate and answer the book (topic 1 activity 1) about the internal regulations of the General Chemistry lab and the following questionnaire. a) Which information do the MSDS provide?	 Ríos N., Blanco A., Villanueva R. and Cholico D., (2015) Laboratorio de Química General I, México Douglas A. Skoog, West, Holler and Crouch (2015), Fundamentos de Química Analítica, 9th edition, Cengage Learning, Mexico. Daniel C. Harris (2012) Análisis Químico Cuantitativo, 3rd edition (6th original edition),

codes to indicate the	b) Why do we have to	Editorial Reverté,
different degrees of	know the safety sheets	Spain.
hazard danger. (Chart	of reagents before	
2*).	carrying out an	- Davis R., Peek M.
	experimentation?	and Stanley G., and
-Projects the labeling	Dy using the pistograms	special contributors
and classification	-By using the pictograms of the substances stored	(Avalos T., Blanco A., Palacios G., Ríos N.)
hazard pictograms of	in the lab, students	(2011) <i>Química</i> ,
the United Nations. ⁽¹⁾	<i>relate</i> the icon, the	Whitten K.) 8 th Special
	background color, and	Edition I, Cengage
-Projects the chart of	the geometric shape	Learning, Mexico.
chemical substance	with the dangerousness	-
incompatibility and	of the substances,	- Whitten K. Davis R.,
provides examples about storing and	mixtures, and work	Peek M. and Stanley
mixing substances.	areas.	G., (2015), <i>Química</i>
(Chart 3*).		10th Edition, Cengage
	- Answer a crossword	Learning, México.
	puzzle from the book	
-Emphasizes the	(topic 1 activity 2.1) writing the word,	- Brown, T., LeMay, H., Bursten, B.,
correct treatment of	according to the	Murphy, C.
waste in order to let	pictogram of	(2014) <i>Química La</i>
students know the	dangerousness.	Ciencia Central, 11 th
importance of having	0	edition. Mexico:
designed micro scale	-Create their own table	Pearson.
experimentations to be	of incompatibility of	

	carried out during the course. -Explains the code of dangerousness in CRETIB residues: NOM- 052-SEMARNAT/2005 (chart 4*) -Explains the classification of chemical reagents based on their degree of purity and their usage.	chemical substances and do some exercises for homework. -Students adopt this chart as a tool for the course. -Are aware of the minimization, treatment and/or mitigation of chemical waste to avoid economic, health, and environmental impact. -Investigate and answer	Regulation (CE) number 1272/2008, of the European Parliament and Council on December 16, 2008, (Globally Harmonized System, GHS). Mexican Official Regulations: Norma Oficial Mexicana NOM-018- STPS-2000
	-Highlights the fact that in order to prevent accidents, it is important to know which and how the experimentations will be carried out: the dangerousness of substances and how to treat and handle them.	<i>the book</i> (topic 1 activity 2.3) about the NFPA color and code of different reagents. -Understand the importance of the purity level to choose in analytical techniques through their degree and professional careers.	Norma oficial mexicana NOM-052- SEMARNAT-2005 Norma oficial Mexicana NOM-054- SEMARNAT-1993

					-Analyze, answer, and calculate their books (topic 1 activity 2.2 and 3) to integrate and consolidate their knowledge on the classification, purity, and dangerousness of chemical substances. -Are aware of the importance of having good practices at the lab in order to prevent accidents.	
Unit 2		2.1		- Displays in images	-Identify the material the	
Knowing and	Know, understand,	Mass measurements		and physically the lab	professor shows them.	
handling lab material and	and choose the lab material	2.2	c	material and	-Use the material and	
			6	equipment, pointing		
equipment	equipment and	Volume measurement	4	out their appropriate	equipment to carry out,	
	basic operations to	2.3		usage and function in	record assigned	
	know the precision	Basic operations		each operation.	measurements, and	

i e t	and accuracy of the nstruments to express the sechnically correct results.	 2.4 Heating instruments and equipment 2.5 Labeling and cleaning lab material. 2.6 Instrument accuracy and precision 2.7 Meaningful numbers 	 <i>Explains</i> the difference between accuracy and precision in the measurements and their relationship with the used material or instrument. <i>Explains</i> and performs glass cutting and folding. 	report the technically correct results. -Complete the charts from the book (topic 2 activities 1, 2 and 3) about knowing the lab equipment and material as well as precision, accuracy, and meaningful numbers used to express correct results. -Create the necessary capillaries to use in the experimentations 1 and 2 of the book *.	
a s	Recognize, classify, and compare substances through experimentation,	3.1 Physical changes and properties of matter.	-Reaffirms knowledge related to experimentation and its application such as	<i>-Investigate</i> before class the safety sheets of the substances to be used in the experimentations	

	identifying the	3.2		melting point, boiling	-Answer a questionnaire
	changes they go	Elements and		point and density.	to reaffirm the
	through during a	compounds			theoretical knowledge of
	physical process			-Explains the	experimentations 1, 2,
	and determining			experimental	and 3 before class.
	the most			techniques to use.	
Unit 3	appropriate				-Carry out
The Study of	technique based			-Checks and grades the	experimentation 1 of the
Matter	on the accuracy to	3.3		procedures, results,	book to determine the
	interpret the	Mixtures	18	conclusions, and	melting points of
	behavior and			reports after each	different substances
	properties of			experimentation.	through Thiele's method
	matter in its three				and so identify a
	phases.				problem sample from
				-Explains and	that property.
				consolidates the	
	Identify and			relationships between	-Carry out
	quantify			a mole and the	experimentation 2 of the
	substances by			Avogadro number to	book to determine the
	experimenting with			determine the number	boiling points of
	decomposition and			of atoms, molecules or	different substances and
	physical chemical			ions contained in them.	so identify a problem
	reactions to show				sample from that
	the Avogadro			-Explains the technique	property.
	number, calculate			to obtain the constant	
	empirical numbers			value or Avogadro	-Compare, analyze, and
	of compounds, and				relate the collected

prove		number	results with the vapor
stoichiometry	laws.	experimentally.	pressure diagrams based
			on the temperature of
Prepare and		- Explains the analytical	each substance.
separate mixtu	ures	quantitative technique	
using adequate	e	to determine the	-Interpret the collected
physical metho	ods	empirical formula of a	results based on
to identify eac	h	chemical substance	atmospheric pressure.
one of the		based on the data	
components		obtained	-Carry out
present in thes	se	experimentally through	experimentation 3 from
systems throug	gh	a combustion reaction	the book to determine
their propertie	25.	and a decomposition	the density of room
		reaction.	temperature distilled
			H_2O through a
		-Reaffirms the	volumetric flask and a
		knowledge to	volumetric pipette, and
		determine correctly	compare the obtained
		the empirical and	values with the
		molecular formulas	reference information.
		based on the	
		relationship of element	-Investigate before class
		masses that can be	water densities in 20 to
		obtained	35 °C temperatures.
		experimentally	
		according to the	-Compare the collected
		stoichiometry laws.	results and determine

-Checks students' the density of different	
abilities to apply and samples (juice, milk, etc.)	
develop knowledge through the most precise	
during the method.	
experimentations.	
-Before class, students	
-Checks and grades the investigate the safety	
procedures, results sheets of the substances	
conclusions and used in experimentation	
reports turned in after 4 and 5 and complete	
each experimentation. the requested summary.	
-Consolidates the -Build up a small glossary	
classification of matter from different sources of	
in pure substances, terms that will help them	
elements and answer a questionnaire	
compounds as well as for experimentation 4.	
homogeneous and	
heterogeneous -Calculate and show the	
mixtures. Avogadro number from	
the data obtained in	
-Consolidates the experimentation 4.	
physical processes of	
mixture separation: -Investigate the	
decantation, determination of the	
adsorption, absorption, empirical formula in	
filtering, distillation, different bibliographic	

outportion courses and answer a
evaporation, sources and answer a
centrifugation questionnaire that
crystallization, consolidates the
chromatography etc. theoretical knowledge of
that can be applied in the experimentation.
the analytical
techniques of the <i>-Carry out</i>
experimentations. <i>experimentations</i> 4 and
5.
-Explains the
separation of pigments <i>-Develop</i> a procedure
in a sample of and calculate the
chloroplasts through empirical formula from
paper chromatography, the data obtained in the
identifying the basic analysis through a
different substances of decomposition reaction.
the mixture through
their color and their <i>-Investigate</i> before class
delay factor. the safety sheets
involved in
-Checks and grades the experimentation 6.
procedures, results
conclusions and -Answer a questionnaire
reports turned in after before class to
each experimentation. consolidate the
theoretical knowledge of
experimentation 6.

Unit 4 Stoichiometry	Identify, describe and experiment qualitatively and quantitatively different types of reactions in aqueous systems, supporting the data on solubility	4.1 Chemical equations4.2 Calculations based on chemical equations.4.3 Reactions in aqueous solutions.	12	-Presents examples of chemical reactions to identify whether they are redox or non-redox as well as the classification based on the applied process: combustion, neutralization,	-Investigate before class different bibliographic sources to answer a questionnaire about the rules of solubility in order to apply them in the experimentation.	
					-Collect information at the moment of carrying out experimentation 6 about chloroplast separation. Demonstrate that they are a mixture of pigments with different colors: chlorophyll-a (deep green), chlorophyll b (green), carotenes (light yellow) and xanthophyll (yellowish orange). Identify the substances through the obtained data about the coloring and delay factors.	

$\boldsymbol{U}\textsc{NIVERSIDAD}$ de $\boldsymbol{G}\textsc{U}\textsc{ADALAJARA}$

rules,	combination, synthesis,	-Investigate before class	
concentration	decomposition,	the safety sheets	
expressions and	sequential, etc.	involved in	
separation		experimentation 7 and	
methods to	-Explains, gives	writes a summary about	
calculate concepts	examples and	them.	
related to	consolidates the		
stoichiometry.	balance method by	-Carry out	
	trial and error for	experimentations	
	chemical equations,	7, following the	
	simple redox and non-	guidelines of the	
	redox.	professor.	
	-Creates a diagram,	-Carry out, predict and	
	placing the chemical	<i>realize</i> when two	
	equation in the center	substances in aqueous	
	to describe around it	solution react through	
	the qualitative and	an ionic exchange,	
	quantitative	generating a precipitate	
	information that is	and describing the	
	obtained through the	outcomes of	
	experimentations.	experimentation 7 to	
		compare them with the	
	-Explains the charts and	theory.	
	the analytical	-Carry out and complete	
	technique for	the balance of	
	experimentation # 7.	precipitation reactions	

-Checks and grades the (metathesis) of the
procedures, results, different experimental
conclusion, and reports chemical equations
turned in after each through the trial and
0
experimentation. error method.
Eveloine aives
-Explains, gives -Investigate before class
examples and the safety sheets
consolidates the involved in
concepts of limiting experimentation 8 and
reagent, percentage of writes a summary about
excess reagent, them.
percentage of
theoretical -Determine the
performance and stoichiometric
percentage of coefficient of a reaction
conversion (relating to calculate
the reality with the quantitatively the
theory). amount of substances
that are consumed or
-Explains the analytical produced in the
technique to carry out experimentations and
experimentation 8, compare them to the
considering the purity theory.
of the chemical
reagents used in the <i>-Apply</i> the concept of
experimental process. limiting and excess

	-Checks and grades the procedures, results	reagents and identify these substances in a	
	conclusions and reports turned in after	balanced equation to determine the reaction	
		performance.	
	each experimentation.	performance.	
	-Explains and	-Answer a questionnaire	
	consolidates the	before class and solve a	
	activity series of metals	problem that implies	
	in aqueous solutions to	developing a strategy to	
	predict if a metal will	determine the limiting	
	be oxidized or not by a	reagent.	
	specific acid.		
		-Carry out	
	-Explains and	experimentation # 8 to	
	consolidates the most	determine the amount	
	common forms of	of substances that are	
	dissolution	consumed or produced,	
	concentration:	determining the limiting	
	percentage of mass,	reagent and the reaction	
	percentage of volume,	performance from the	
	ppm, molarity,	data obtained in the	
	molality, normality to	experimentation in order	
	be used in all the	to understand why the	
	analytical techniques of	real performance is	
	all the	lower than the	
		theoretical performance.	

experimentations with
aqueous reactionsDraw flowcharts to
show the development
-Explains the analytical of the experimentations
technique used in in order to distinguish
experimentation # 9, the different physical
showing the diagram of and chemical processes
sequential reactions to that take place.
relate the different
physicochemical -Carry out
processes that occur experimentation 9 y and
during the answer a questionnaire
experimentation and to consolidate the
that involve different theoretical knowledge
types of reactions: and to relate it to the
combination, experimentations.
decomposition,
substitution, <i>-Create</i> a conceptual
metathesis and redox. map or check the
formula sheets to
-Explains the analytical describe the different
technique of ways to express the
experimentation 10, dissolution
which implies a concentrations.
metathesis reaction to
determine the molar <i>-Investigate</i> before class
and normal the safety sheets

	concentration of a	involved in
	solution through the	experimentation 10 and
	data obtained during	writes a summary about
	the experimentation.	them.
	-Relates the theoretical	-Answer multiple-choice
	foundations of the	exercises from the book
	stoichiometry laws	and a crossword puzzle
	with the	to consolidate students'
	experimentation.	theoretical knowledge
		and experimental
		knowledge.
	-Checks and grades the	
	procedures, results	-Carry out
	conclusions and	experimentation 10 and
	reports turned in after	determines the molar
	each experimentation.	and normal
		concentration of a
		solution through the
		data obtained with
		different chemical and
		physical processes,
		relating them to their
		theoretical foundations.

Unit 5	Apply the gas and	5.1		-Reaffirms the	-Compare the
Wet gases	Dalton's laws,	Liquid and gas		characteristics that	characteristics of liquids
	experimenting with	properties.		distinguish gases,	solids and gases.
	physical processes	5.2		liquids and solids.	
	and chemical	Dalton's law			-Investigate how to
	reactions that	5.3		-Consolidate the	measure the different
	generate gases,	Stoichiometry in gas		properties of gases and	types of gas pressures
	collecting them	systems collected in		liquids such as	and the units used to
	over wet surfaces	liquids.		standard pressure,	express it, including
	to calculate			atmospheric pressure,	atmospheric and vapor
	concepts related to			manometric pressure,	pressure in order to
	stoichiometry.			absolute pressure,	relate it to the data
				vapor pressure,	obtained during the
			6	percentage of relative	experimentation.
				humidity, etc.	
					-Create a conceptual
				-Reaffirms gas and	map to involve the gas
				Dalton laws.	and Dalton's laws.
				E data and	to particular hadron allow
				-Explains and	-Investigate before class
				consolidates the	the safety sheets
				mixture of different	involved in
				substances that react	experimentation 11 and
				among them to	writes a summary about
				generate a gas that is	them.
				possible to recollect	-Get the H2O vapor
				and determine its	pressure charts of

|--|

Centro Universitario de Ciencias Exactas e Ingenierías Secretaría Académica / Coordinación de la Licenciatura en Química Comité de Innovación Curricular de la Licenciatura en Química

Professor's methodology for learning unit 3 (experimental stage)

- 1. For each of the topics, professor assigns activities before class: questionnaires, flow charts, search for information and calculations (when necessary) in order for the students to become autonomous and for them to know the work in detail.
- 2. In order to avoid accidents in the lab, it is essential for the students to know which and how the experimentations will be carried out and how hazardous the substances are. This will occur before the actual practice when students investigate how to handle and treat these substances according to the safety sheets.
- 3. At the end of the experimentations, students will calculate and report the results, the discussion of the results and the conclusions of the experimentations in the General Chemistry Lab I book in order to reaffirm their knowledge.

COURSE EVIDENCE (Deliverables)

- 1. Professor asks students for an individual report about each lab session, following the guidelines in the book of General Chemistry. Students turn in this workbook in due time and manner.
- 2. At the end of the course, students turn in the reports organized by dates, with an adequate cover page, spiral-bound together, and in due time and manner.
- At the end of the course, students turn in the General Chemistry Lab I Workbook with the reports of the experimentations in due time and manner.
 Haga clic aquí para escribir texto.