Basic Sciences Division

Department of Chemistry

Electrochemistry I

Centro Universitario de Ciencias Exactas e Ingenierías

	1 GEI	NERA	AL INFORMATI	ION				
Learning Unit Department Format						Format		
Electrochemistry Lab I			Chemistry			Lab		
Prerequisites(P) None	Corequisites (CO) Electrochemistry I		Ascribed Academy Physical Chemistry Academy			Module M2: Synthesis, purification and chemical transformation.		
Туре	Lecture hours	Pi	ractice hours	Total h	nours	Credits		
Basic particular mandatory.	0	52	1 51		3			
Degree in which this class is taught: B.S in Chemistry.								

2.- GENERIC COMPETENCIES

-Problem solving

- -Synthesis and analysis.
- Team work.
- -Computer skills
- -Managing information
- -Oral and written skills to present scientific information
- -Discerning and decision making
- Good lab practices.

Specific competencies:

-Follow up skills through the measurement and observation of chemical properties, events or changes and the corresponding filing in a reliable and systematic way.

-Autonomous development of the acquired knowledge.

- -Ability to apply what is learnt to specific and complex situations.
- -Autonomy and teamwork
- -Ability to solve electrochemical problems.

3 SPECIFIC CHARACTERISTICS OF THE COMPETENCY						
Knowledge	 Students: Prove with experiments the basic concepts of electrochemistry in order to understand the charge transfer processes through electrode solution interfaces, mass transport in cells and conventional and modern electroanalytical techniques are able to describe, reproduce, and control electrochemical processes in everyday and professional lives. 					

Skills	 solve problems that involve laws and equations specific to electrochemistry. handle the software to solve electrochemical problems. apply the knowledge they acquired in order to solve specific and common problems that involve electrochemical processes. acquire the ability to analyze, synthesize and evaluate electrochemical processes.
Aptitudes	 identify and solve problems through the formulation of hypotheses and the application of the necessary principles in an analytical and synthetic way. relate different knowledge of different fields and apply it in professional and ordinary situations. develop study habits and manages his own learning. find solutions to specific theoretical or practical problems where they apply the knowledge they learned.
Values	 develop and exercise values such as responsibility, honesty, tolerance, respect, solidarity, willingness and positive attitude towards individual and group work.

	4 TRANSVERSAL COMPETENCIES						
	Foreign Language (English)						
\checkmark	Critical, analytical and synthetic thinking.						
\checkmark	Oral and written expression						
	Professional ethics						
	Administration of human and material resources						
	Leadership and sustainability						
Creativity, innovation and entrepreneurship							
	Others						

5 COURSE CONTENT OF THE LEARNING UNIT					
Content	Practice				
Unit 1. Main applications of electrochemistry.					
1.1 Introduction to electrochemistry	Course presentation				
1.11 Electrochemical cells and redox pairs.	Course presentation				
1.12 Types of cells, electrodes and notation.					
1.2 Main applications of electrochemistry.	Practice 0A.				
1.21 Electrolysis	Workshop of Electrochemistry				
1.22 Electro-synthesis	I applications.				

1.23 Batteries	
1.24 Corrosion	Practice 0B.
1.25 Galvanoplasty	Workshop of Electrochemistry
1.26 Electro erosion	l applications.
1.27 Electro-refining	
Unit 2. Experimental Electrochemical Thermodynamics	Practice 1.
2.1 Measurements and electric units.	
2.11 Digital multimeter	Handling the multimeter and
2.12 Summary of electric equivalences and circuits.	electric measurements.
2.2. Potentiostats	Practice 2.
2.21 Three electrode cells.	Handling the potentiostat.
2.22 Properties, handling and use of the potentiostat.	
2.3 Electrochemical potential	
2.31 Reference electrodes and their characteristics	Practice 3.
2.32 Primary reference electrode	Building a silver chloride
2.33 Reference electrodes: Calomel and silver chloride electrodes.	electrode.
2.34 Conversion of potential value.	Practice 4.
2.35 Free energy and Nernst Equation	Measurement of ion pair
	potentials.
2.36 Liquid junction potential and Lingane classification.	Practice 5.
2.37 Liquid junction potential measurement and calculation.	Building and measuring
2.38 Salt bridges	potential using a salt bridge.
Unit 3. Ion transport in solutions and experimental electrochemistry kinetics.	
3.1 Migration phenomena	Practice 6.
3.12 Measurement of conductance and conductivity.	Conductivity and dissociation
3.13 Ion mobility.	degree.
3.14 Equivalent conductance and dissociation degree.	
3.2 Electrochemical kinetics	
3.21 Polarization curves and overpotential.	Practice 7.
3.22 Butler-Volmer equation, Tafel equation, transference coefficients and	Polarization curves and
equilibrium potential.	electrode kinetics.
Unit 4. Electrochemical techniques	
4.1 Classification of the electro analytical methods.	Practice 8.
4.2 Potentiometry	Building and application of a
4.21 Direct: Ion-selective electrodes (ISE)	sulfide ion selective electrode.
4.22 Instrumentation and selectivity coefficient	
4.23 Indirect: titrations	
4.24 Equivalence point detection methods and Determination of Keq.	Practice 9.

· · · · · · · · · · · · · · · · · · ·	
4.25 Types of potentiometric titrations	Potentiometric titrations of
4.26 Mathematic follow up of a titration curve	FeCl ₂ with CeCl ₄
4.3 Coulometry	Practice 10.
4.31 Foundations and instrumentation	
4.32 Acid-vase evaluation	Acid-base Coulometry
4.4 Voltammetry	Practice 11.
4.41 Introduction to cyclic voltammetry: Foundations and instrumentation	Even cyclic voltammetry
4.42 Reversible and irreversible reaction mechanisms.	$K_3[Fe(CN)_6]$ and $K_4[Fe(CN)_6]$
4.43 Rotating ring-disc electrode	Practice 12.
4.44 Levich equation and determination of the diffusion coefficient.	Rotating ring disc electrode
4.5 Chronoamperometry	Practice 13.
4.51 Foundations and instrumentation	Chronoamperometry and
4.52 Applications: determination of the diffusion coefficients.	chronocoulometry
	Practice 14.
	Voltammetric determination of
	de acetaminophen

6 ASSESSMENT
Numeric Grade

7 GRADING CRITERIA OF THE LEARNING UNIT						
Indicator of evaluation Percentage						
Departmental exams	30					
Partial exam	0					
Homework	0					
Research activities	20					
Practice reports	40					
Class participation	10					

	8 REQUIRED MATERIAL (for students)					
	Calculator					
	Periodic table					
_	Lab coat					
	Text book					
✓	Workbook					
	Tables of standard potential, table of mobility, etc.					

Centro Universitario de Ciencias Exactas e Ingenierías

9.-SPECIFIC CONTENT BY LEARNING UNITS Clas Professor Generic activities S **Bibliography** Content unit competency of Topics Practice Student activities hou the content unit rs Harris, D. C. 1.1 Introduction to Professor... Students... Encourages Relate the basic (2007). Análisis electrochemistry Students concepts of students to prove 1.11 Electrochemical Químico 3 review, reaffirm experimentally electrochemistry cells and redox pairs. Cuantitativo. 3rd and prove with experimental electrochemical 1.12 Types of cells, edition Spain, experimentally phenomena and activities. Unit 1. electrodes and notation. Barcelona: the basic their applications. 1.2 Main applications of Main applications Practice 0A and concepts and Editorial Revertè. **0B**. of electrochemistry. principles of electrochemistr Workshop of electrochemistry. 1.21 Electrolysis Casillas, N., v to understand Electrochemistr 1.22 Electro-synthesis Gudiño, B. (2016) their y I applications. 6 1.23 Batteries Chapter 1. Notas application. 1.24 Corrosion de Electroquímica 1.25 Galvanoplasty I. UdeG - CUCEI 1.26 Electro erosion 1.27 Electro-refining 2.1 Measurements and Practice 1. Professor... Allen J. Bard and Students Unit 2. Students... Encourages Larry R. (2001). distinguish the Handling the electric units. Experimental Electrochemical students to prove 3 multimeter and characteristics 2.11 Digital multimeter Electrochemical Give opinions, experimentally the Methods: of the electric Thermodynamics comment and thermodynamic Fundamentals and thermodynamic measurements

principles that rule over the electrochemical	2.12 Summary of electric equivalences and circuits.			concepts of the electrochemical processes.	discuss the contents of the practice.		Applications. Faulkner John Wiley and Sons
processes.	 2.2. Potentiostats 2.21 Three electrode cells. 2.22 Properties, handling and use of the potentiostat. 	Practice 2 . Handling the potentiostat.	3		Do research about the topics of the lab practices. Write professional reports related to	•	P.W. Atkins (2006), <i>Química Física</i> (8th edition). Ed. Addison –Wesley Iberoamérica
	 2.3 Electrochemical potential 2.31 Reference electrodes and their characteristics 2.32 Primary reference electrode 2.33 Reference electrode and silver chloride electrodes. 	Practice 3. Building a silver chloride electrode.	3		reports related to the lab results. Discuss and make conclusions about the lab experiments.	-	 Casillas, N., Gudiño, B. (2016) Chapter. 2. Notas de Electroquímica I. UdeG - CUCEI
	2.34 Conversion of potential value. 2.35 Free energy and Nernst Equation	Practice 4. Measurement of ion pair potentials.	3				

		 2.36 Liquid junction potential and Lingane classification. 2.37 Liquid junction potential measurement and calculation. 2.38 Salt bridges 	Practice 5. Building and measuring potential using a salt bridge.	1.5				
Unit 3. Ion transport in solutions and experimental electrochemistry kinetics.	Students understand the essential concepts in order to apply the mathematical theoretical	 3.1 Migration phenomena 3.12 Measurement of conductance and conductivity. 3.13 Ion mobility. 3.14 Equivalent conductance and dissociation degree. 	Practice 6. Conductivity and dissociation degree.	1.5	Professor Encourages students to prove experimentally the basic concepts to integrate understand the ion transport in solutions and the kinetics that rules the	Students Prove experimentally the basic concepts of ion transport in kinetic and electrochemical solution.	•	Allen J. Bard and Larry R. (2001). Electrochemical Methods: Fundamentals and Applications. Faulkner John Wiley and Sons Casillas, N., Gudiño, B. (2016)
	knowledge of the kinetic models in electrochemical cells.	 3.2 Electrochemical kinetics 3.21 Polarization curves and overpotential. 3.22 Butler-Volmer equation, Tafel equation, 	Practice 7. Polarization curves and electrode kinetics.	3	electrochemical processes			Chapter. 3. <i>Notas de Electroquímica I.</i> UdeG - CUCEI

		transference coefficients and equilibrium potential.						
Unit 4. Electrochemical techniques	Students use the knowledge and information acquired in this unit to integrate it in the creation	 4.1 Classification of the electro analytical methods. 4.2 Potentiometry 4.21 Direct: Ion-selective electrodes (ISE) 4.22 Instrumentation and selectivity coefficient 	Practice 8. Building and application of a sulfide ion selective electrode	3	Professor Teaches the basic concepts to guarantee the experimental foundations of electroanalytical techniques of the unit. Guides students through the proper use of instruments and equipment in the lab. Discusses the advantages and disadvantages of the different	Students Give opinions, comment and discuss the contents of the practice. Do research about the topics of the lab practices.		Skoog, D., West, D., et al (2014). <i>Fundamentos de Química Analítica.</i> Mexico, D.F.: CENGAGE Learning. Rubinson K & Rubinson, J. (2000) <i>Análisis</i> <i>Instrumental.</i>
	of analytical techniques relevant to chemistry.	 4.23 Indirect: titrations 4.24 Equivalence point detection methods and Determination of Keq. 4.25 Types of potentiometric titrations 	Practice 9. Potentiometric titrations of FeCl ₂ with CeCl ₄	3		Write professional reports related to the lab results. Discuss and make conclusions about the lab experiments		Madrid, Spain: Prentice Hall Casillas, N., Gudiño, B. (2016) Chapter. 4. <i>Notas</i> <i>de Electroquímica</i> <i>I</i> . UdeG - CUCEI

4.26 Mathematic follow up of a titration curve 4.3 Coulometry 4.31 Foundations and instrumentation 4.32 Acid-base evaluation	Practice 10. Acid-base coulometry	3	techniques that were learnt.	Reproduce and modify an electrochemical method in order to know a physicochemical property or quantify and analyte.	
44.4 Voltammetry 4.41 Introduction to cyclic voltammetry: Foundations and instrumentation. 4.42 Reversible and irreversible reaction mechanisms.	Practice 11. Even cyclic voltammetry K ₃ [Fe(CN) ₆] and K ₄ [Fe(CN) ₆]	3			
4.43 Rotating ring-disc electrode 4.44 Levich equation and determination of the diffusion coefficient.	Practice 12. Rotating ring disc electrode	3			

Centro Universitario de Ciencias Exactas e Ingenierías

	<u></u>							
	4.5 Chronoamperometry	Practice 13.						
	4.51 Foundations and	Chronoampero						
	instrumentation	metry and	3					
	4.52 Applications:	chronocoulomet						
	determination of the	ry						
	diffusion coefficients.	Practice 14.		1				
		Voltammetric						
		determination	3					
		of de						
		acetaminophen						
COURSE EVIDENCE								
(Deliverables)								
- Departmental exam								
- Research tasks								
- Problem and concept solutions								
- Practice evidence reports and/or logbook.								

10.-PROFESSOR'S PROFILE

Bachelor, Master or Doctorate degree in Chemistry.

Specific knowledge in electrochemistry.

Teaching experience in electrochemistry.

11.-AUTHORS OF THE LEARNING UNIT

Bernardo Gudiño Guzmán and Dr. José Miguel Velázquez López

12.-MODIFICATION AND LAST UPDATE

February 2017

